Las células de un embrión son
capaces de generar cualquier tejido del organismo (totipotencia). Tras varias
divisiones se van diferenciando hasta especializarse para realizar distintas
funciones (almacenar grasa como los adipocitos, contraerse rítmicamente como
los cardiomiocitos del corazón o transportar oxígeno, la tarea de los
eritrocitos sanguíneos) y una vez especializadas, si se dividen ya sólo pueden
generar células de la misma clase. Esto era cierto hasta que, saltándose las advertencias
de una de sus profesoras de Eton, quien no le consideraba en absoluto apto para
la carrera científica, llegó a la
ciencia John Bertrand Gurdon.
John Gurdon |
A principios de los 60 no se
sabía qué pasaba en la célula durante el proceso de diferenciación, ¿perdía la
célula parte de su material genético y por eso ya no podía generar otras
células distintas? ¿Seguía presente todo el ADN pero parte se silenciaba?
¿Podía una célula diferenciada recuperar
la totipotencia? Para responder a estas preguntas John Gurdon contaba
con dos herramientas: Xenopus laevis,
la rana modelo para investigación, cuyos huevos son de gran tamaño y cuya
ovulación puede estimularse para conseguir muchos huevos, y la técnica de
transferencia nuclear que recientemente había puesto a punto con otros
colegas. Pensó que si cogía el núcleo de
una célula ya diferenciada y lo transfería a un huevo sin núcleo podría
observar si en algún caso este núcleo ya diferenciado era capaz de volver a
comportarse como un núcleo embrionario y dar lugar a un renacuajo. Así lo hizo:
cogió núcleos marcados previamente de células del epitelio intestinal de los
renacuajos y los transfirió a huevos enucleados no fertilizados. Observó que
parte de los núcleos transferidos eran capaces de generar renacuajos sanos y
que el éxito del proceso aumentaba si se hacían transferencias seriadas, es
decir, si el núcleo transferido empezaba a dividirse como un embrión y parte de
estos nuevos núcleos se transferían a otros huevos. Había logrado dos hitos:
clonar ranas y demostrar que el material genético que contiene una célula
diferenciada contiene la información suficiente para dar lugar a todas las células del organismo
en el ambiente adecuado. Así, la
diferenciación de una célula no se basa
en la pérdida de capacidad de su núcleo para dar lugar a otros tipos celulares: en el ambiente adecuado
pueden recuperar sus propiedades embrionarias, ventaja que años después
aprovecharía Wilmut para clonar el primer mamífero, la oveja Dollly.
Xenopus laevis y sus huevos |
Cuando Gurdon publicaba sus
descubrimientos en el 62 Shinya Yamanaka
era aún un embrión en desarrollo. Cuando creció se licenció en medicina y se
hizo cirujano pero esta profesión no acababa de llenarle: se lamentaba de las
limitaciones de la medicina y se veía a sí mismo como un cirujano lento y
torpe, lo que le empujó a dedicarse a la investigación. Tras una estancia en
Estados Unidos regresó a Japón y comenzó
su propio grupo. Había trabajado
identificando factores de transcripción
(proteínas que regulan la expresión del ADN), implicados en mantener las
propiedades embrionarias de las células y había descubierto uno de ellos, Nanog, proteína a la que nombraron así por TÍr na nÓg, la tierra de la juventud en la mitología celta. Siguiendo esta senda se
propuso buscar una combinación de factores de transcripción que consiguiesen
que las células volvieran a ser pluripotentes, una vuelta atrás en el tiempo y
en el desarrollo, al estilo Gurdon pero sin necesidad de transferir núcleos,
transformando la propia célula y conociendo la naturaleza de los cambios
producidos. Así, trabajando con células
de ratón consiguió identificar los factores de transcripción necesarios para
que ésta pueda comportarse como una embrionaria, para reprogramarlas. Un año después consiguió identificar los
imprescindibles en humano, reprogramando células de la piel y publicando un
artículo prácticamente simultáneo al de otro científico, Thomson, que no ha
sido galardonado con el premio, probablemente porque el salto de gigante se dio con el artículo de
Yamanaka en células murinas.
Shinya Yamanaka |
Pero, ¿por qué son tan importantes estos
hallazgos, por qué han merecido el Nobel? Los experimentos de Gurdon cambiaron lo que
se sabía sobre diferenciación celular y probaron que reprogramar células era
posible. Además abrieron las puertas de la clonación y la medicina regenerativa. Los descubrimientos de Yamanaka son sin
embargo el primer paso para quizás en el futuro poder construir tejidos y
órganos a partir de células del propio paciente, eludiendo los problemas de
rechazo que se producirían si se usasen células embrionarias y el problema
ético, al evitar la desintegración de embriones humanos para la obtención de
las células embrionarias. Hoy por hoy las células reprogramadas, que se conocen como
iPS (induced Pluripotent Stem cells,
células madre pluripotentes inducidas) son ya una herramienta para estudiar
enfermedades usando el tejido del propio paciente sin necesidad de emplear
métodos invasivos para extraerlo, y permiten la prueba de distintas drogas y comprobar su eficacia.
Gracias a los hallazgos de Gurdon
y Yamanaka lo mejor está aún por venir.
James Thomson |
Ian Wilmut con Dolly |
Sigue el blog y otras noticias curiosas sobre ciencia en Facebook
En Twitter: @xcienciainfusa
No hay comentarios:
Publicar un comentario